Feature-Aware Test Generation for Deep Learning Models
Xingcheng Chen, Oliver Weißl, Andrea Stocco
In this work, we examine how models behave under isolated semantic changes by directly manipulating individual features in StyleGAN’s S-space, instead of entangled Z or W representations. This enables precise, feature-level testing and helps uncover shortcut behaviors and robustness issues that are often hidden by standard accuracy-based evaluations.
For more information, click on the To the paper button at the bottom of the page.
Abstract:
As deep learning models are widely used in software systems, test generation plays a crucial role in assessing the quality of such models before deployment. To date, the most advanced test generators rely on generative AI to synthesize inputs; however, these approaches remain limited in providing semantic insight into the causes of misbehaviours and in offering fine-grained semantic controllability over the generated inputs. In this paper, we introduce Detect, a feature-aware test generation framework for vision-based deep learning (DL) models that systematically generates inputs by perturbing disentangled semantic attributes within the latent space. Detect perturbs individual latent features in a controlled way and observes how these changes affect the model’s output. Through this process, it identifies which features lead to behavior shifts and uses a vision-language model for semantic attribution. By distinguishing between task-relevant and irrelevant features, Detect applies feature-aware perturbations targeted for both generalization and robustness. Empirical results across image classification and detection tasks show that Detect generates high-quality test cases with fine-grained control, reveals distinct shortcut behaviors across model architectures (convolutional and transformer-based), and bugs that are not captured by accuracy metrics. Specifically, Detect outperforms a state-of-the-art test generator in decision boundary discovery and a leading spurious feature localization method in identifying robustness failures. Our findings show that fully fine-tuned convolutional models are prone to overfitting on localized cues, such as co-occurring visual traits, while weakly supervised transformers tend to rely on global features, such as environmental variances. These findings highlight the value of interpretable and feature-aware testing in improving DL model reliability.